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ABSTRACT 

Let X1, X2,.  •. ,  Xn be a sequence of independent random variables, let M 

be a rearrangement invariant space on the underlying probability space, 

and let N be a symmetric sequence space. This paper gives an approx- 
imate formula for the quantity IIII(Xi)IINIIM whenever Lq embeds into 
M for some 1 < q < oc. This extends work of Johnson and Schechtman 
who tackled the case when N = gp, and recent work of Gordon, Litvak, 
Schiitt and Werner who obtained similar results for Orlicz spaces. 

1. I n t r o d u c t i o n  

In a recent paper  [4], Gordon,  Litvak, Sch/it t  and Werner  considered the problem 

of comput ing  Ell (ai~i)llN, where N is an Orlicz sequence space, a l ,  a2 . . . . .  an 

are real numbers,  and ~1, ~2 . . . . .  ~n are identically d is t r ibuted  random variables. 

They  were able to construct  an Orlicz function A such tha t  

Eli (a~)ILN ~ IL(ai)NA, 

where A ~ B means  tha t  the rat io of A/B is bounded  below and above by con- 

stants.  Yehoram Gordon asked the quest ion if a similar formula could be found 
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for general independent random variables - -  not just scalar multiples of identi- 

cally distributed random variables. Mark Rudelson asked about the possibility 

of computing higher moments. 

Seeking to answer these questions, the author found it to his psychological 

advantage to consider the case of general rearrangement invariant spaces rather 

than just Orlicz norms. Let M be a rearrangement invariant space on [0, 1], or 

equivalently on any probability space, and let N be a symmetric sequence space. 

We will assume that all these vector spaces satisfy the triangle inequality. It 

seems quite likely that many of the formulae will extend to at least some quasi- 

Banach situations, but we do not explore this possibility here. We will normalize 

the spaces so that  IIIIIM = II(1,0,. . .  , 0 )  IIN = 1. We seek to find an approximate 

formula for [[l[(.J~i)[[X[[ M . 

The appropriate concept for describing our formula, the disjoint sum, or 

d i s junc t i f i ca t ion ,  has been present in the literature for some time, for example, 
# 

[2], [5], [7], [8]. This is the function on [0, n] that takes t to X[t]+l(t-[t]), where [t] 

denotes the integer part of t, and Xff denotes the non-increasing rearrangment 

of Xi. We will write Y for the non-increasing rearrangement of this function, 

that is, Y: [0, n] -~ [0, ~ ]  is a non-increasing function such that  

measure{Y > t} = ~ Pr(Xi > t). 
i=1 

The conjecture we will explore is 

(1) [ll[(.~.i)[[Nl[M ,'~ [IY[[o,1][IM + [[(Y(i))[[N, 

where the constants of approximation may be allowed to depend upon M. 

Indeed for all the special cases hitherto considered in the literature, this conjec- 

ture is true, as long as M is far away from L ~ .  (It is clear that there must be some 

such restriction. For example, if M = Loo then I1 I! (Xi)ll N II M = II(ll Xi  II~)IIN, and 

so equation (1) does not necessarily hold.) First, Rosenthal's inequality [13] can 

be interpreted as the truth of this statement in the cases that N = gl or N = g2, 

and M = Lp for 1 < p < co. This was extended by Carothers and Dilworth [2] 

to the case when M is a Lorentz space Lp,q, 1 _~ p < 0% 1 < q _4 co, and then by 

Johnson and Schechtman [8] to the case when M is any rearrangement invariant 

space, even including the case when M is a quasi-Banach space, as long as Lq 

embeds into M, and M embeds into Lr, via the natural embeddings, for some 

0 < r _< q < co. It is not hard to extend this last result to also allow N = gv for 

any 1 _< p < ec. 
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The main result of this paper is the following. 

THEOREM 1: Equation (1) is true if  there exists 1 <_ q < oo such that Lq embeds 

continuously via the natural embedding into M.  In that case, the constants of 

approximation in equation (1) depend only upon q and the constant of embed- 

ding. 

In the last part of this paper, we will describe how to use this to recover some 

of the results of [4]. 

The author would like to express his sincere appreciation to Mark Rudelson 

for useful conversations, and for bringing this problem and reference [4] to his 

attention, and also to Joel Zinn for pointing out the reference [11]. 

2. P r o o f  of  M a i n  T h e o r e m  

If (xi) is a sequence, we will denote its non-increasing rearrangement by (x*). If f 

is a function or random variable, we will denote its non-increasing rearrangement 

by f # .  

LEMMA 1: Equation (1) is true if  M = L1 and N = Coo. 

Proof'. This follows because 

1 
(2) ~measure{K[[o,1 ] > t} < Pr (maxXi  > t) _< measure{Kilo,11 > t}. 

This has an elementary proof - -  see for example [5, Proposition 2.1] or [3]. Thus 

(3) [ll[(xi)l[~l]l ~ Y(t)dt .  | 

For each integer 1 < m 5 n, let km denote the sequence space II(xi)llkm = 

x;. 

LEMMA 3: For each posi t ive  integer  m, equation (1) is true if M = L1 and 

N = km, with constants of approximation independent of m. 

Proo~ Let I1, I2 , . . . ,  In be {0, 1}-valued independent random variables that are 

also independent of (X~), where Pr(Ii  = 1) = 1/m. Applying equation (3) to the 

sequence (I iXi)  we obtain 

(4) fo 1 1(io1 ) [lll(IiXi)ll~olll ~ Y (m t )d t  ~ - -  Y( t )d t  + II(Y(i)llkm . 
m 
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Next, let A/[ denote the a-field generated by (Xi). Then applying equation (4), 
we see that 

E(II(/~X~)IIo~I.M ) ~ ~ll(Xi)llk . 

Thus we also obtain that 

[lll(I~X¢)lloolll = IIE(II(£X¢)IIo~IM)II1 ~ ~llll(X~)llk~ Ilr 

The result follows. | 

Let P denote the space of functions f on [0, n] for which its quasi-norm 

iiflip = lif#i[0,1]iIM + i i ( f#( i)) iIN 

is finite. In fact this quasi-norm is equivalent to a norm, viz. 

"fKIP' = Hf#'[o,1][[M 4- ( f i_ l]#( t )d t )  N 

(see for example [12, Section 7]). However we will content ourselves with proving 

the following statement. 

LEMMA 4: For any function f on [0, n] we have ]]f(./lOO)llp ( 200llfH P. 

Proof'. First, since M satisfies the triangle inequality, it follows that 

IIf(./lOO)#i[o,1]lIM <_ IO011f#1[O,Uloo]IHM . Next, since f#(i/lO0) < f#([i/lO0]), 
where [t] denotes the integer part of t, we see that 

99 

I[(f#(i/lOO))iiN <-lO011(f#(i))iIN + E f#(i/lO0) 
i=l 

fo 1 <1001](f#(i))llN + 100 f#(t)dt 

___10011fllp. a 

Finally we need to cite a couple of results. For the case we need, p = 1, the first 

result is essentially an immediate corollary of the Hoffmann-Jcrgensen inequal- 

ity [6], at least in the form found in [9, Proposition 1.3.2], and inequality (2). 

However, we find an explicit reference to what we need in [5, Theorem 6.1]. The 

second result is [5, Theorem 7.1]. These concern maximal sums of vector valued 

random variables U ma~k I1 k = El----1Zil], where Z1, Z~,. . . ,  Z,~ are Banach-valued 
independent random variables. Let V: [0, 1] -~ [0, cc] be defined so that 

measure{V > t} = min 1, y~'pr(llzil[ > t) . 
i=1 
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THEOREM 5: I fp  > 1, then IIUIIp ~ U#(e-P /4)  + IIVlI~. 

THEOREM 6: Suppose that Lq embeds continuously into M via the natural em- 

bedding, where 1 _< q < oc. Then IIUIIM ~ ]lull1 + IIVilM, where the constant of 
approximation depends only upon q and the embedding constant. 

Proof of Theorem 1: Let us first show the lower bound. Here the proof is very 

similar to the proof of [12, Theorem 27]. We know that 

Ilfxi)llg = sup ~2_~**xiYi 
IlulIN._<l i=1 

. • 
= sup (Y,~ - Ym+l)[[(Xi)l]km, 

IMIN*<lm=I 

where by convention Yn+I = 0, and N* denotes the dual space to N. From this, 

we immediately see that 

n 

]]~'~H(.Xi)IIN ~ s u p  E ( y ~ n  - y~n+l)]~ll(Xi)l lkm 
IIyIIN* <1 ~'="= 1 

n (fo 1 ) sup E (y* - y~n+l ) Y(t)dt+N(Y(i))llkm 
IIYlIN* <l m= 1 

Y(t)dt + II(Y(i))IIN 

since y~ _< 1 whenever IlYLIN. <- 1. To finish the lower bound, we see that 

21111(xdllNIIM ----- IIIl(XdlloollM + NI(X~)IIN, 

and the result follows by equation (2). 

Now let us focus on the upper bound. Really the first part of this proof follows 

by an inequality obtained independently by van Zuijlen [14], [15], [16], and Marcus 

and Pisier [10]. But we shall provide a self-contained proof that is essentially a 

copy of the proof of this same result that may be found in [11, Theorem 5.1]. 

From Lemma 4, it follows that IIY(./lOO)llp _< 2oollYllp. We have that 

Pr()l(XdliN > 200IIYllp) _< Pr(Jl(xdJlN > IlY(-/lOO)llp) 

__ Pr(II(XdIIN > II(Y(i/100))IIN) 
_< Pr(3i: X* > Y(i/100)) 

_< ~-~ Pr(X/* > Y(i/lO0)) 
i=1 
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n i 

<- E E H Pr(XA > Y(i/lO0)) 
i = 1  j l < j 2 < " ' < j l  k = l  

n 

i = 1  j = l  

n 
~--E ii 

l~ii! 
i=1 

1 <-- 
- 4 e '  

Pr(Xj  > Y(i/lO0))) 

that is to say, (If(Xi)rlN)#(1/ae) < 20011YIIp. 
Now we may apply Theorems 5 and 6 to Zi = Xie~ E N, where e~ denotes the 

ith unit vector. In that case we see that U = II(X011N, and V = Yl[o,l], and the 

result follows. | 

3. A p p l i c a t i o n  to  Orl icz  Spaces  

In this section we will recover some of the results of Gordon, Litvak, Schiitt and 

Werner [4]. 

LEMMA 7: Suppose that M and N are Orlicz spaces constructed from Orlicz 
functions • and • respectively. Define a function 

e(x) = I @(x) ifO < x < 1, 

t O(x) ifx>_l. 

Then P is equivalent to the Orlicz space Lo.  

Proof" Note that because of the normalization on M and N, O(1) = ~(1) = 1. 

Also, while O need not be an Orlicz function, it does satisfy the property that  

O(x)/x is an increasing function, and hence it is easily seen to be equivalent to 

the Orlicz function: 

(~(x) = ~o x O(t)t dt. 

Suppose that ]]f][Lo --< 1, that is foO(f#(t))dt _< 1. Then in particular 

f# (1 )  <_ f~ O(f#(t))dt <_ 1. Thus 

n f n ~ v(f#(i)) < e(:#(1)) + O(f#(t))dt ~_ 2, 
i=1 
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and so ~-:~in]~(f#(i)/2) < 1, tha t  is ]](f#(i))]] N _< 2. Also, if a = 

measure{ f  > 1} (so a _< 1), then 

/01 /0 • ( f# ( t ) )d t  <_ O( f#( t ) )d t  + (1 - a) < 2, 

tha t  is, IIf#1[o,x]LIM _< 2. Therefore Jlfllp <- 4. 
Now suppose tha t  I[flJp < 1. Again we see tha t  f # ( 1 )  < 1, and a = 

measure{f  > 1} _< 1. Hence 

/o n /0 o O(f#( t ) )d t  < O(f#( t ) )d t  + (1 - a) + q~(f#(i)) < 3. 
i=1 

Since O(x /3)  < O(x) /3 ,  it follows tha t  ]if[tLo < 3. H 

Now we will give a formulat ion of one of the results of [4], tha t  gives a formula in 

the case tha t  M and N are Orlicz spaces. While the formula presented here may 

appear  superficially different than  the formula given in [4], a short argument  

shows tha t  it is equivalent (at least in the case discussed in [4], tha t  is, when 

M = L 1 ) .  

THEOREM 8: Suppose that ~], ~2 . . . . .  ~n are identically distributed random 

variables, and tha t  M and N are Orlicz spaces where M is constructed from an 

Orlicz function q> satisfying 

lira s .p  log ~ ( x ) / l o g ( x )  < o~. 
x - - + o o  

Then there exists an Orlicg function A, equivalent to the function x F-~ E(~)(X~l )), 

where 0 is the function constructed in Lemma 7, such that for all real numbers 

al~ a 2 , . . . ,  an We h a v e  

l i i l(a~)llNlIM ~ II(a~)ll~- 

Proo~ The  condition on • tells us tha t  there exist positive constants c and q 

such tha t  ~ (x)  <_ cxq for sufficiently large x, tha t  is, Lq embeds into M.  Thus 

by Theorem 1 and Lemma 7 we see tha t  

But  

i i l ] (~, '~)l l~i l .  ~ ]ivlio. 

?z 

IlYIIo = inf{A > 0: ~ E ( O ( a i ~ i / A ) )  < 1} = II(a~)llh. 
i=1 

Now we will give another  proof  of the following result tha t  appears in [4]. This 

paper  also gives many other  examples like this tha t  are interesting. 
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COROLLARY 9: Suppose that  71, 7 2 , . . . ,  7n are identically distributed normal- 

ized Gaussian random variables, and let 1 <_ m <_ n be an integer. Let  h be an 

Odicz  function equivalent to xe -U(mx)~ . Then for all real numbers al, a2 . . . .  , 

an we have 

m 

(5) ][[[(aiTi)Hkml]l~]l(ai)HLA,."~ E a ~  + m  sup a * i v / l  + l o g i .  
i = 1  l~_i~_n/m 

Prook An easy argument shows that if M = LI and N = kin, then the Orlicz 

function O constructed in Lemma 7 is equivalent to the function x ~-+ ( x - l / m )  +. 

Then the function A(x) constructed in Theorem 8 is equivalent to 

/ fo (xt  -- 1 /m)+e- t2 /2d t  -= x - (t - 1 /mx)+e- t~ /2d t ,  

and the rest of the left approximation of (5) follows by simple calculations. 

To see the second approximation of (5), note that, for 0 < x < rn, A(x) is 

equivalent to x, and that  for x > m, h(x) is equivalent to me 1 -U(~x?  . Then by 

an argument similar to the proof of Lemma 7, we see that 

H(ai)]]LA ,~ ]](a*)l<_i<_rn]] 1 ~- m]](ami)[]Lox,(l_l/~2). 

Finally, we need to show that, 

b* sup b* v/]  - + log i. 
[l( i ) l l a  e p ( l_1 /x2  ) ~ 

× i 

This is essentially a sequential version of results from [1].  Suppose that 

II(b*)llLoxp(,_.x2, < 1. Then for any positive integer i, 

i exp(1 - 1/(b*) 2) _< Z exp(1 - 1/(b~) 2) _< 1, 

J 

that is, b 'v / i -+ l o g / <  1. Conversely, if supi b'x/1 + logi _< 1, then 

1 
E exp(1 - 1/ (b; /2)  2) <_ E exp( -3  - 41ogi) = e -a E • -< 1, 

i i i 

that  is, [](b*)llL~xp(l_l/~2 ) < 2. | 

We remark that a similar argument shows that if ~1, ~2 . . . .  , ~ are identically 

distributed random variables with EI~I I = 1, then 

m 

E I[[l(ai~i)[]km H1 ~ a~ ~- m[I][(ami~i)[]c~]ll. 
i = 1  
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Finally, let us finish with another  remark. In  [4], the authors  showed in the 

case tha t  M = L1 tha t  their upper  bound held even if the r andom variables were 

not  independent.  This can also hold in our more general case. In [12] there was 

introduced the concept of what  it means for a rearrangement  invariant space to 

be D*-convex. This proper ty  is held, for example, by all Orlicz spaces. Following 

the proof  of [12, Theorem 27], it can be shown tha t  equation (1) holds even if 

the sequence (Xi) is not  necessarily independent,  as long as M = L1 and P is 

D*-convex. It  is easy to see from the definition tha t  the condition tha t  P be 

D*-convex cannot  be dropped.  We leave the details to the interested reader. 
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